Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
نویسندگان
چکیده
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
منابع مشابه
Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملFUSION FRAMES IN HILBERT SPACES
Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.
متن کاملHigh Performance Adaptive Fidelity Algorithms for Multi-Modality Optic Nerve Head Image Fusion
A high performance adaptive fidelity approach for multi-modality Optic Nerve Head (ONH) image fusion is presented. The new image fusion method, which consists of the Adaptive Fidelity Exploratory Algorithm (AFEA) and the Heuristic Optimization Algorithm (HOA), is reliable and time efficient. It has achieved an optimal fusion result by giving the visualization of fundus image with a maximum angi...
متن کاملData Fusion and Multi-Criteria Decision Making for Producing Oil and Gas Resources Potential Maps (Case Study: Saracheh Zone, Qom Province)
This paper focuses on the application of Geoinformatic methods (simultaneous using of remote sensing, geographic information system, global positioning system, terrestrial and aerial photogrammetry) in optimal operation and exploration risk reduction of oil and gas reservoirs. To approach the purpose, two aspects of remote sensing (satellite image) and terrestrial and aerial photogrammetry have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 473 2198 شماره
صفحات -
تاریخ انتشار 2017